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Due to computational cost, CFD
analyses can focus on:
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I [F. A. Hernandez et al., 2016]
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of the BB

FW soggotﬂperature distribution (°C)
= =—— M50

[9)

o

S
}

« System-level analyses can
bring information on the entire
plant and sometimes reach
good level of detalils

« BUT they are based on physics
simplifications (e.g. 0D
modelling of manifolds)
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e 2 identical sets of coaxial 1/0O manifolds

« FW derivations: one per FW channel,
outflowing from inlet manifold (IM)

« BZ derivations: grouped, inflowing into the
outlet manifold (OM)

58 FW
derivations
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radial
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il derivations
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A1 The need for a 1D hydraulic
model of manifolds N
(to BoP)
The 0D models for manifolds cannot compute ™ BMs
correctly the coolant distribution among the
BMs - define a 1D model of the manifolds: -
» Two separate models for IM and OM Joop e
« Connections to the BM models through fluid /N § o OB
POrts MD r
» Possibility to implement thermal coupling | | B 2NN
(not focus here) o
/ OB4 } < IMD FW
« Modular approach: sub-model for BSS # /
portions referring to each BMs, further split i/
in “derivation objects” (IMD/OMD) IMD ﬂv
#1
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1D Model developed exploiting CFD analyses (see [A. Bertinetti et al., Fus Eng
Des 2018]):

1. Perform CFD analyses on the BSS outboard equatorial region to:
— Dimension a sub-size mock-up
— Derive constitutive relations

2. Develop a 1D model able to reproduce the coolant and pressure distribution in
the BSS equatorial region:

— Use correlations derived from the mock-up analysis

— Compare the results (in dimensionless form) against CFD on full-size BSS
3. Extend the model to entire BSS and compare against CFD
4. Calibrate and verify the model through experiments on the mock-up
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development

1D manifolds model needs in input friction factor, localized Ap coefficients and
mass flow repartition coefficients

 Calibration based on mass flow repartition and average pressure at selected
locations from CFD results on the mock-up geometry, and benchmarked against
CFD results on the full-size BSS outboard equatorial region

— ==CFD IM full-size B;
e ==CFD IM mock-up =

o -2 ==1D model O 20-
o —
o = ©
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o4 -g 10}
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6 . - "0
0 10 20 30 40 1 2 3 4 5
Xth [-] BCFD IM full-size lICFD IM mnck—up.1 D mndel|

—> The 1D model can be validated from the mock-up test

[A. Bertinetti et al., 2018]
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OB equatorial region

BSS model
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Entire OB
BSS model
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Step 3: model extension to

 Full BSS model is
obtained connecting In
series different
Instances of single-
BM BSS model

e Friction factors
obtained through
correlations
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1D MODEL

144414

BC not
representative!

N\

8 MPa

poloidal

b

toroidal radial

17.6 kg/s, 300 °C

11/15/2018

Step 3: model extension to
entire BSS (11)

Excellent agreement is found

when comparing the 1D
model of the full “stand-
alone” BSS to CFD

Mass flow rate [kg/s]

1D model | CFD

OB1 2.29 2.3
OB2 2.59 2.6
OB3 2.70 2.7
OB4 2.80 2.8
OB5 2.60 2.6
OB6 251 2.5
OB7 212 2.1

TOFE 2018, Orlando, FL, USA

CFD
HCPB Design Report 2015

* Fluid domain temperature set to 300°C
* Reference fluid domain pressure: 8 MPa

outflow to OBA1

outflowto OB2

outflow to OB3

Outlets setto
relative
pressure 0 Pa

outflow to OB4

outflow to OB5

outflow to OBB

outflow to OB7

%/ OBsegment INLET for

A redundant cooling loop 1
Mass flow: 17.6 kg/s

[F. A. Hernandez et al., 2016]
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» The newly-developed 1D model can be
substituted to the old OD model In
GETTHEM, connected to the models
of the Blanket Modules

* The full model can be applied to:

— Design the equivalent loop for the mock-
up test

— Derive a hydraulic characterization of the
full BB system

— Analyse the actual coolant distribution
among the BMs, with correct BCs
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« When connected to the detailed
models of the BM, the coolant is
redistributed differently from
what CFD found

« Both CFD and GETTHEM
highlighted the need for orifices
and/or design changes, but the use
of non-representative BCs in CFD
causes an underestimation of the
maldistribution!

 GETTHEM computes different
values of pressure at the
Inlet/outlet of the BMs, which
may be used as BCs for CFD
analyses
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v" 1D hydraulic model of the BSS manifolds has been developed in the
GETTHEM model and benchmarked

v"When applied to a blanket segment, it allows a more accurate
evaluation of the coolant flow distribution, and of the possible need
for orifices or design modifications

In perspective:

- Validation of the 1D model against experiments on the mock-up (to
be carried out at HELOKA in KIT)

- Similar model for Water-Cooled Lithium-Lead BB concept ongoing
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