

A multi-scale approach for the analysis of open volumetric air receivers

M. Cagnoli¹, A. Froio¹, L. Savoldi¹, R. Zanino¹, F. Zaversky²

¹ NEMO group, Dipartimento Energia, Politecnico di Torino, Torino, Italy ² CENER, Solar Thermal Energy Department, Sarriguren (Navarra), Spain

• CFD detailed (3D) analysis (Fluent)

Used to characterize the component

1095 1085 1075 1065 1055

Single channel

• Solid+Fluid domain

Cup

- Modelica 1D model.
- Input from micro-scale

Receiver

- Modelica 1D model.
- 1D Cups + 1D air return channels

Micro-Scale (single channel)

Aim: Characterize the channel from a thermo-fluidynamic point of view

- Steady state conditions
- Tètouan, Morocco
- 21st June, 12.00 pm

Flow Field → Pressure drop[−]

and fluid-solid heat exchange \rightarrow Local heat transfer coefficient

Meso-Scale (cup)

Micro-Scale \rightarrow Meso-Scale (cup 1D model – porous medium approximation)

Hydraulic model

Cross-shaped air gap (4 adjacent cups) No interactions among adjacent air gaps Counter flow thermal coupling with cups

Consider the non-uniform heat

flux distribution on the front face

References:

[1] F.M. Téllez, et al., SolAir 200 project, Technical report, Plataforma Solar de Almeria, 2003. [2] http://sfera2.sollab.eu/uploads/images/networking/SFERA%20SUMMER%20SCHOOL%202014%20-%20 PRESENTATIONS/SolarTowerReceivers%20-%20Bernhard%20Hoffschmidt.pdf [3] http://sfera.sollab.eu/downloads/Schools/Heat_Flux_Measurement_Jesus_Ballestrin_SFERA2013.pdf

Conclusion: A novel multiscale approach is used for the evaluation of the (dynamic) performance of open volumetric air receivers. First receiver model implemented and successfully tested.

Perspective: Include the receiver model in a plant model with the main components

SolarPACES 2016 international conference, October 11-14 2016, Abu Dhabi, UAE